
hours after transfection. COS-7 cells were incubat-
ed with EGF (0.1 mg/ml) [biotinylated, complexed
to Texas Red–streptoavidin (Molecular Probes, Eu-
gene, OR)] in binding buffer [20 mM Hepes–NaOH
( pH 7.5), 130 mM NaCl, and 0.1% bovine serum
albumin] at 4°C for 60 min. Internalization of EGF
was allowed by incubation in Dulbecco’s modified

Eagle’s medium at 37°C for 10 min, then excess
EGF was removed with 0.2 M AcOH ( pH 2.5) and
0.5 M NaCl at 4°C for 5 min. Cells were fixed in
3.7% formaldehyde, permeabilized with 0.2% Tri-
ton X-100, and immunostained with a polyclonal
antibody to myc (Santa Cruz Biotechnology, Santa
Cruz, CA) and fluorescein isothiocyanate–conju-

gated antibody to rabbit (Organon Teknika, Boxtel,
Netherlands). Internalization of EGF was observed
by confocal microscopy (Bio-Rad).
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Simultaneous Binding of
PtdIns(4,5)P2 and Clathrin by
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Adaptor protein 180 (AP180) and its homolog, clathrin assembly lymphoid
myeloid leukemia protein (CALM), are closely related proteins that play im-
portant roles in clathrin-mediated endocytosis. Here, we present the structure
of the NH2-terminal domain of CALM bound to phosphatidylinositol-4,5-
bisphosphate [PtdIns(4,5)P2] via a lysine-rich motif. This motif is found in other
proteins predicted to have domains of similar structure (for example, Hun-
tingtin interacting protein 1). The structure is in part similar to the epsin
NH2-terminal (ENTH) domain, but epsin lacks the PtdIns(4,5)P2-binding site.
Because AP180 could bind to PtdIns(4,5)P2 and clathrin simultaneously, it may
serve to tether clathrin to the membrane. This was shown by using purified
components and a budding assay on preformed lipid monolayers. In the pres-
ence of AP180, clathrin lattices formed on the monolayer. When AP2 was also
present, coated pits were formed.

Budding of clathrin-coated vesicles is a pro-
cess by which cells package specific cargo
into vesicles in a regulated fashion (1–3).
Important functions are the uptake of nutri-
ents, the regulation of receptor and transport-
er numbers on the plasma membrane, and the
recycling of synaptic vesicles. AP180 and
AP2 are both major components of clathrin
coats. AP2 is a heterotetrameric complex that
binds to phosphoinositides in the membrane
and to the cytoplasmic domains of membrane
proteins destined for internalization (1, 3, 4).
AP2 binds clathrin and can stimulate clathrin
cage assembly in vitro (5, 6). It also interacts
with a range of cytoplasmic proteins includ-
ing AP180 (7). Like AP2, AP180 also binds
directly to clathrin and can stimulate clathrin
cage assembly in vitro, limiting the size dis-
tribution of the resulting cages (8–11). The
related proteins, CALM (AP180-2, a close
homolog of synaptic AP180), LAP (the Dro-
sophila AP180 homolog), and UNC-11 (the

Caenorhabditis elegans homolog), are all im-
plicated in clathrin-coated vesicle endocyto-
sis (12, 13). CALM was identified and named
because of its homology to AP180 and to
reflect its involvement in t(10;11) chromo-
somal translocations found in various leuke-
mias (14). Disruptions of the LAP and Unc-
11 genes impair clathrin-dependent recycling
of synaptic vesicles, resulting in fewer vesi-
cles of more variable size. The NH2-terminal
domain of AP180 (AP180-N) shows the
highest degree of conservation across AP180
homologs, and binds to inositol polyphos-
phates (10, 15, 16), whereas the COOH-
terminal domain contains the putative clath-
rin- and AP2-binding sites (Fig. 1A).

When expressed in COS-7 fibroblasts, both
full-length AP180 and AP180-C (residues 530
to 915) inhibited uptake of epidermal growth
factor (EGF) and transferrin (17) (Fig. 1B), as
is the case for CALM (18). Clathrin was redis-
tributed in transfected cells, and we noted fewer
coated pits per unit of cell surface–membrane
length (8% of control, Fig. 1C). This showed
that endocytosis was inhibited by blocking
clathrin-coated pit formation, consistent with
the ability of the COOH-terminus to bind clath-
rin and to stimulate cage assembly in vitro
(8–11). However, AP180-N overexpression did
not inhibit EGF or transferrin uptake (Fig. 1B).

It had no apparent protein-binding partners but
is more localized to the plasma membrane,
consistent with binding to polyphosphoinosi-
tides (15, 16).

To probe the molecular basis of phospho-
inositide interactions, we solved the structure
of the NH2-terminal domain from the close
AP180 homolog, CALM, at 2 Å resolution
(19, 20) (crystals of AP180-N did not diffract
well). There were nine a helices forming a
solenoid structure (Fig. 2). This is reminis-
cent of other protein families formed from a
superhelix of a helices such as the armadillo
(21) and tetratricopeptide repeat (22) do-
mains, but it is most similar to the ENTH
domain of epsin (23) (Fig. 2B). The first
seven helices of epsin superimposed well on
those of CALM. In epsin, however, the final
a8 helix folded back across the others,
whereas in CALM the final three long helices
continued the solenoidal pattern. Because of
the high sequence homology of CALM-N
and AP180-N (81% sequence identity) (Fig.
2), we can safely assume that the NH2-termi-
nal domain of AP180 has the same structure.

X-ray data were collected at 2 Å resolution
from CALM-N crystals soaked in a series of
inositol phosphates and phospholipids. Binding
was observed for inositol hexakisphosphate (D-
myo-inositol-1,2,3,4,5,6-hexakisphosphate,
InsP6), inositol-4,5-bisphosphate [Ins(4,5)P2],
and a soluble short-chain (diC8) L-a-D-myo-
phosphatidylinositol-4,5-bisphosphate. No sig-
nificant binding was observed in the crystal for
short-chain (diC8) L-a-D-myo-phosphatidylino-
sitol-3,4,5-trisphosphate. The binding site is
unusual (Fig. 2): Typical ligand-binding sites
on proteins lie in a pocket or groove, but this
site is on the surface, with the phosphates
perched on the tips of the side chains of three
lysines and a histidine, like a ball balanced on
the fingertips. In all ligands, only the two
phosphates were well ordered and contacted the
protein. The cluster of lysines and histidine
formed a marked positively charged patch on
the surface (Fig. 2C), appropriate for a phos-
phate-binding protein.

Database searches with the AP180-N/
CALM-N identified several classes of related
sequences (Fig. 2H). First, there were the
members of the AP180 family itself, with a
conserved NH2-terminal domain, having
PtdIns(4,5)P2-binding motifs, which we iden-
tified from the observed binding in the crys-
tal, K(X)9KX(K/R)(H/Y). The COOH-termi-
nal domains of these proteins contain clath-
rin-binding motifs (3, 24), as well as Asp-
Pro-Phe (DPF)-like a- and b-adaptin–
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binding motifs (7, 25) and Asn-Pro-Phe
(NPF) motifs, which bind to Eps15 homology
(EH) domains (26) (see Fig. 1A). Second,
there were other proteins similar to AP180,
containing the PtdIns(4,5)P2-binding motifs,
but having unrelated COOH-terminal re-
gions. Of these proteins, Huntingtin interact-
ing protein 1 (HIP1) and SLA2p have actin-
binding regions in their COOH-termini.
Third, there were the epsin-related proteins;
these showed a lower sequence homology in
the NH2-terminus but shared the same struc-
ture for at least the first 140 residues (Fig. 2).
They lack completely the PtdIns(4,5)P2-bind-
ing motif, but have a signature (D/E)PW
motif in the loop connecting a1 to a2. Ac-
cording to our predictions, a-adaptin (which
has no sequence homology to AP180) has a
PtdIns(4,5)P2-binding motif near its NH2-ter-
minus between the first two predicted helices.
Indeed, a fragment from this region of the
protein has been shown to bind PtdIns(4,5)P2

(4).
Specificity of the phosphoinositide inter-

action with AP180-N and CALM-N was test-
ed by sedimentation assays using liposomes
or lipid tubules (19, 27, 28). Tubules contain-
ing 10% PtdIns(4,5)P2 efficiently sedimented
AP180-N and CALM-N with the same appar-
ent affinity (KM values of 4.6 6 0.7 mM and
5.8 6 1.7 mM, respectively) but mutations in
the PtdIns(4,5)P2 motif (KKK-EEE) abol-
ished sedimentation (Fig. 3A). AP180-N was
likewise sedimented with liposomes contain-
ing 10% PtdIns(4,5)P2, but not with lipo-
somes when replaced with 10% phosphati-
dylserine (PtdSer), or 10% PtdIns, or 10%
PtdIns(3,4)P2 and less efficiently with lipo-
somes containing 10% PtdIns(4)P or 10%

PtdIns(3,5)P2 or 10% PtdIns(3,4,5)P3 (Fig.
3B). Full-length AP180 binds to lipid tubules
or liposomes containing PtdIns(4,5)P2 with
characteristics similar to those of AP180-N;
however, a mutant in the PtdIns(4,5)P2-bind-
ing motif (KKK-EKE) does not (Fig. 3C).

Combinations of full-length AP180,
AP2, and clathrin were then tested in sed-
imentation assays with PtdIns(4,5)P2-con-
taining liposomes. AP2 was sedimented both
in the presence and absence of AP180 (Fig.
3C). Clathrin only sedimented in the presence
of AP180 [but not the PtdIns(4,5)P2-bind-

ing motif mutant], and then it associated
preferentially with the lipid-bound AP180.
Incubation of AP180, AP2, and clathrin
resulted in the sedimentation of all compo-
nents, and the clathrin in the pellet was
resistant to 1% Triton X-100 treatment,
implying a degree of polymerization (addi-
tion of Triton X-100 has been used as a
purification step in the isolation of clathrin
coats). Specificity of sedimentation was
confirmed by using a number of controls
including the absence of liposomes (Fig.
3C).

Fig. 1. Overexpression
of AP180 in COS-7
cells inhibits endocyto-
sis. (A) Domain struc-
ture of AP180 and oth-
er family members; red
boxed regions (with an-
notated sequence iden-
tities) indicate the con-
served domain homol-
ogy. The strongest pre-
dicted clathrin-binding
site is indicated (or-
ange), but other sites
are present, at least in
AP180 and CALM. (B)
Immunofluorescence
data of EGF (green) up-
take in cells transiently
transfected with AP180,
AP180-N, or AP180-C
(stained red). The
panel immediately
below AP180-C is the
same field stained for
endogenous clathrin
distribution (white). (C) Electron microscopy of immunogold-labeled transferrin receptors (arrows)
in COS-7 cells transiently transfected with AP180-C. Transferrin receptors no longer accumulated in
coated pits. WT, wild type.

Table 1. Crystallographic statistics. Values in parentheses apply to the high-resolution shell.

Native EMTS PtdIns(4,5)P2 Ins(4,5)P2 InsP6

Data collection
Resolution (Å) (outer bin) 2.0 (2.11) 2.0 (2.11) 2.0 (2.11) 2.0 (2.11) 2.0 (2.11)
Rmerge* 0.080 (1.036) 0.124 (2.03) 0.104 (1.153) 0.126 (1.958) 0.082 (0.952)
Rmeas† 0.083 (1.077) 0.145 (2.39) 0.112 (1.468) 0.136 (2.113) 0.088 (1.033)

Completeness (%) 100 (100) 100 (100) 100 (100) 99.4 (99.9) 100 (100)
Multiplicity 14.0 (13.3) 6.9 (6.7) 7.1 (7.0) 7.2 (7.0) 7.0 (6.4)
Wilson plot B (Å2) 43 43 43 43 44

Refinement
R (Rfree)‡ 0.187 (0.220) 0.195 (0.230) 0.193 (0.215) 0.190 (0.219)

^B& (Å2) 48 49 49 49
Nreflections (Nfree) 26,057 (1,324) 26,014 (1,322) 25,847 (1,315) 25,815 (1,310)
Natoms (Nwater) 2,244 (130) 2,289 (128) 2,282 (128) 2,278 (128)

Rmsd bond length (Å) 0.031 0.032 0.026 0.031
Rmsd bond angle (°) 2.1 2.5 2.2 2.4

Number of Ramachandran violations 0 0 0 0
MIR phasing EMTS
Number of sites 2 (one of them split)

Rderiv§ 0.16
Rcullis\ (centric, acentric) 0.63, 0.74

Phasing power: isomorphous (anomalous)¶ 1.35 (0.70)
Mean figure of merit 0.59
Figure of merit after solvent flattening (all data) 0.91*

*Rmerge 5 SSi Ih 2 Ih(i) / SSi Ih, where Ih is the mean intensity for reflection h. †Rmeas 5 S=(n/n 2 1)Si Ih 2 Ih(i) / SSi Ih, the multiplicity weighted Rmerge. ‡R 5 SFP

2 Fcalc/SFP. §Rderiv 5 SFPH 2 FP/SFP. \Rcullis 5 S\FPH 2 FP 2 FH(calc)\/SFPH 2 FP. ¶Phasing power 5 ^  FH(calc)/phase-integrated lack of closure&.
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The recruitment of clathrin by AP180
was further investigated by electron mi-
croscopy to visualize clathrin lattice and
cage formation. In the presence of AP180
and clathrin, latticelike structures formed
on the surface of lipid monolayers (29)
(Fig. 4A). Addition of AP2 resulted in the
formation of more distinct electron-dense
areas of clathrin assembly (Fig. 4B). Sin-
gle-angle platinum shadowing of negative-
ly stained grids showed that in the absence
of AP2 the lattice was predominantly flat
(Fig. 4C). Invaginated coated buds were

formed in the presence of AP2 (Fig. 4D).
The diameter was well within the expected
size range for brain-derived coated vesi-
cles. In the absence of AP180, no detect-
able intermediates were visible by electron
microscopy. When PtdIns(4,5)P2 was re-
placed by PtdIns, the flat clathrin lattices
were no longer seen (Fig. 4E).

Our experiments demonstrate that the
minimal requirements for the initial stage
of coated pit invagination are clathrin,
AP180, AP2, and PtdIns(4,5)P2-containing
membranes. However, with these compo-

nents, the pits do not invaginate complete-
ly, even in the presence of excess clathrin.
AP180 concentrates clathrin on the mem-
brane, and AP2s stimulate curved lattice
assembly, consistent with their coat assem-
bly activity (6 ). On a more general note, we
show that the AP180 NH2-terminal domain
is a PtdIns(4,5)P2-binding domain respon-
sible for membrane localization of AP180,
and we propose that similar domains
found in other proteins will also recruit
them specifically to PtdIns(4,5)P2-rich
membranes.

Fig. 2. The structure of
CALM-N bound to
PtdIns(4,5)P2. (A) Ribbon
diagram of CALM-N,
colored from green at
the NH2-terminus to
gold at the COOH-ter-
minus. (B) The ENTH
domain of epsin in the
same orientation [PDB
code 1edu (23)]. (C) The
surface of CALM-N col-
ored by electrostatic po-
tential, red 110 kT e21,
blue –10 kT e21. This is
a slightly different view
from that in (A), to show
the strong positive patch
that binds PtdIns(4,5)P2.
(D) Close-up of
PtdIns(4,5)P2-binding
site, showing a differ-
ence electron density
map omitting the ligand,
contoured at 2s. There
was strong density only
for the 4- and 5-phos-
phates, weak density for
the inositol ring and the
1-phosphate, and none
for the lipid chains. (E)
Ins(4,5)P2 also shows
most density for the
phosphates: it was mod-
eled as a 50:50 mixture
of two binding modes
interchanging the 4- and
5-phosphates. (F) InsP6
was probably bound in
multiple orientations,
and the orientation of
the inositol ring was dif-
ferent from that of the
bisphosphates. (G) Se-
quence alignments of
the very similar CALM-N
and AP180-N (81%
identical, unshaded, fur-
ther conserved residues
shaded mauve), and the
structurally similar epsin
ENTH domain (16% se-
quence identity, shaded
orange). a Helices are
shown as cylinders, col-
ored as in A and B. PtdIns(4,5)P2-binding residues are marked with
arrows. Also shown is the PtdIns(4,5)P2-binding region of a-adaptin,
with the conserved PtdIns(4,5)P2-binding motif and predicted a
helices. (H) The a1 to a2 loop regions for three families of proteins:

AP180/CALM family with the PtdIns(4,5)P2-binding motif (blue);
some other proteins with the PtdIns(4,5)P2-binding motif (blue); epsin
family with the (D/E)PW motif (orange). Other conserved residues are
colored purple. Yeast-SLA2 is Yeast-SLA2p.
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Note added in proof: It has been reported
(44) that AP180 and its clathrin-binding do-
main inhibit transferrin endocytosis in HeLa
and Cos cells and redistribute endogenous
clathrin in HeLa cells.
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Notch Inhibition of RAS
Signaling Through MAP Kinase

Phosphatase LIP-1 During C.
elegans Vulval Development
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Stefano Canevascini, Alex Hajnal*

During Caenorhabditis elegans vulval development, a signal from the anchor
cell stimulates the RTK/RAS/MAPK (receptor tyrosine kinase/RAS/mitogen-
activated protein kinase) signaling pathway in the closest vulval pre-
cursor cell P6.p to induce the primary fate. A lateral signal from P6.p then
activates the Notch signaling pathway in the neighboring cells P5.p and P7.p
to prevent them from adopting the primary fate and to specify the sec-
ondary fate. The MAP kinase phosphatase LIP-1 mediates this lateral inhi-
bition of the primary fate. LIN-12/NOTCH up-regulates lip-1 transcription
in P5.p and P7.p where LIP-1 inactivates the MAP kinase to inhibit primary
fate specification. LIP-1 thus links the two signaling pathways to generate
a pattern.

MAP kinase phosphatases (MKPs) belong
to the family of dual-specificity phospha-
tases that inactivate different types of MAP
kinases by dephosphorylating the critical
phosphotyrosine and phosphothreonine res-
idues of the kinases (1). The transcription

of MKPs is rapidly induced by various
stimuli such as growth factors and cellular
stresses that activate MAP kinases, sug-
gesting that MKPs may participate in an
autoinhibitory feedback loop.

To study the role of MKPs in RTK/
RAS/MAPK signaling during development,
we searched the C. elegans genome se-
quence for homologs of vertebrate MKPs.
Among the 185 predicted phosphatases, we
identified a candidate, termed lip-1 (lateral
signal induced phosphatase21, open read-
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